加入收藏 | 设为首页 | 会员中心 | 我要投稿 PHP编程网 - 金华站长网 (https://www.0579zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 建站 > 正文

深度学习已经触到天花板了吗

发布时间:2019-01-28 16:42:44 所属栏目:建站 来源:大数据文摘
导读:副标题#e# 大数据文摘出品 编译:小蒋、lvy、王嘉仪 经过了多波浪潮的人工智能这次能够有新的突破吗?还是,历史依然会重演呢?岁末年初,本文作者Thomas Nield从历史上的英国讲起,进而探讨了人工智能到底是什么,以及这一波人工智能浪潮又有哪些不同。 许多

一个好的数据科学家可能被雇佣来构建一个神经网络,但当她真正研究这个问题时,她觉得构建一个朴素的贝叶斯分类器可能更合适。对于那些成功使用图像识别和语言处理的公司来说,他们将继续钻研下去。但我认为神经网络并没有在这类问题空间以外的地方取得进展。毕竟,缓和预期对风投融资没有帮助。

过去的人工智能寒冬在推动计算机科学的发展方面是毁灭性的。但是人工智能研究确实产生了一些有用的东西,比如搜索算法可以在国际象棋中夺冠,也可以将运输问题的成本最小化。简单来说,创新性的算法往往只擅长于一个特定的任务。

我想说明的是,许多问题都有都有很多相对应的有效的解决方案。为了不在人工智能的寒冬中冻死,你最好专注于你想要去解决的问题并且理解它的本质。在这基础上,为这个特定问题提供一个直观的解决方案路径。如果你要对文本消息进行分类,可能需要使用朴素贝叶斯分类器。如果你试图优化你的运输网络,可能需要使用离散优化。不管周围的研究者怎么说,你都可以对卷积模型持有怀疑态度,并质疑它的理论是否正确。

如果你不认同毕达哥拉斯派的哲学,那么你能想到的最好方法就是让人工智能“模拟”一些行为,创造出它产生了情感和思想的错觉。

希望这篇文章能让你清楚的意识到,深度学习并不是解决大多数问题的正确方法。不要为所有问题寻求一个通用人工智能解决方案,因为你不可能找到的。

哲学vs科学

我想在这篇文章中提出的最后一点是,这个问题比科学更具有哲学意义。我们的每一个想法和感觉都仅仅是一堆数字以线性代数的方式被乘法和加法吗?难道我们的大脑仅仅是一个神经网络,整天只是在做点积吗?这听起来像是毕达哥拉斯的哲学把我们的意识降维到了一个数字矩阵。也许这就是为什么如此多的科学家相信通用人工智能是可能存在的,因为人类和计算机没有什么差别(我只是在这指出了这一点,并不是评论这个世界观是对还是错)。

不管周围的研究者怎么说,你都可以对卷积模型持有怀疑态度,并质疑它的理论是否正确。

如果你不认同毕达哥拉斯的哲学,那么你能想到的最好方法就是让人工智能“模拟”一些行为,创造出它产生了情感和思想的错觉。翻译程序并不懂得中文,只不过它可以通过寻找概率模式来“模拟”理解中文的假象。当你的智能手机“识别”狗狗的图片时,难道它真的能识别出狗狗吗?还是它只是看到了它以前学习过的数字模式?

相关报道:

https://towardsdatascience.com/is-deep-learning-already-hitting-its-limitations-c81826082ac3

(编辑:PHP编程网 - 金华站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!