加入收藏 | 设为首页 | 会员中心 | 我要投稿 PHP编程网 - 金华站长网 (https://www.0579zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 建站 > 正文

对比复现34个预训练模型,PyTorch和Keras你选谁?

发布时间:2019-03-12 00:23:59 所属栏目:建站 来源:机器之心编译
导读:副标题#e# Keras 和 PyTorch 当然是对初学者最友好的深度学习框架,它们用起来就像描述架构的简单语言一样,告诉框架哪一层该用什么。这样减少了很多抽象工作,例如设计静态计算图、分别定义各张量的维度与内容等等。 但是,到底哪一个框架更好一点呢?当然

现在如果我们从预训练模型的角度看,那么相同的模型在不同的框架上,验证集准确度又是什么样的?在这个项目中,作者用两个框架一共复现了 34 个预训练模型,并给出了所有预训练模型的验证准确率。所以该项目不仅能作为对比依据,同时还能作为学习资源,又有什么比直接学习经典模型代码更好的方法呢?

1. 预训练模型不是已经可以复现了吗?

在 PyTorch 中是这样的。然而有些 Keras 用户却觉得复现非常难,他们遇见的问题可以分为三类:

  • 不能复现 Keras 已发布的基准结果,即使完全复制示例代码也没有用。实际上,他们报告的准确率(截止到 2019 年 2 月)通常略高于实际准确率。
  • 一些预训练的 Keras 模型在部署到某个服务器或与其他 Keras 模型一起依次运行时会产生不一致或较低的准确率。
  • 使用批归一化(BN)的 Keras 模型可能并不可靠。对于一些模型,前向传播评估仍然会导致推理阶段中的权重改变。

这些问题都是现实存在的,原 GitHub 项目为每个问题都提供了链接。项目作者的目标之一是通过为 Keras 预训练模型创建可复现基准,从而帮助解决上述的一些问题。解决方法可分为以下三个方面,在 Keras 中要做到:推理期间避免分批(batches)。

每次运行一个样本,这样做非常慢,但可以为每个模型得出一个可复现的输出。

只在本地函数或 with 语句中运行模型,以确保在加载下一个模型时,前一个模型的任何东西都不会保存在内存中。

2. 预训练模型复现结果

以下是 Keras 和 PyTorch 的「实际」验证集准确度表(已经在 macOS 10.11.6、Linux Debian 9 和 Ubuntu 18.04 上得到验证)。

3. 复现方法

首先需要下载 ImageNet 2012 验证集,该数据集包含 50000 张图片。在 ILSVRC2012_img_val.tar 下载完成后,运行以下命令行预处理/提取验证集:

  1. # Credit to Soumith: https://github.com/soumith/imagenet-multiGPU.torch 
  2. $ cd ../ && mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar 
  3. $ wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash 

ImageNet 验证集中每个示例的 top 5 预测已经进行了预计,运行以下命令行将直接使用这些预计算结果,并在几秒内复现 Keras 和 PyTorch 基准。

  1. $ git clone https://github.com:cgnorthcutt/imagenet-benchmarking.git 
  2. $ cd benchmarking-keras-pytorch 
  3. $ python imagenet_benchmarking.py /path/to/imagenet_val_data 

不使用预计算数据也可以复现每个 Keras 和 PyTorch 的推理输出。Keras 的推理要花很长时间(5-10 小时),因为每次只计算一个示例的前向传播,还要避免向量计算。如果要可靠地复现同样的准确率,这是目前发现的唯一的方法。PyTorch 的推理非常快(一个小时都不到)。复现代码如下:

  1. $ git clone https://github.com:cgnorthcutt/imagenet-benchmarking.git 
  2. $ cd benchmarking-keras-pytorch 
  3. $ # Compute outputs of PyTorch models (1 hour) 
  4. $ ./imagenet_pytorch_get_predictions.py /path/to/imagenet_val_data 
  5. $ # Compute outputs of Keras models (5-10 hours) 
  6. $ ./imagenet_keras_get_predictions.py /path/to/imagenet_val_data 
  7. $ # View benchmark results 
  8. $ ./imagenet_benchmarking.py /path/to/imagenet_val_data 

你可以控制 GPU 的使用、批大小、输出存储目录等。运行时加上-h flag,可以查看命令行参数选项。

看完文章之后,你更中意谁呢?

原文链接:http://l7.curtisnorthcutt.com/towards-reproducibility-benchmarking-keras-pytorch

【本文是51CTO专栏机构“机器之心”的原创译文,微信公众号“机器之心( id: almosthuman2014)”】

戳这里,看该作者更多好文

(编辑:PHP编程网 - 金华站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!