加入收藏 | 设为首页 | 会员中心 | 我要投稿 PHP编程网 - 金华站长网 (https://www.0579zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 业界 > 正文

波士顿动力机器狗学会跳绳!三条狗玩得真欢乐

发布时间:2021-02-19 14:48:49 所属栏目:业界 来源:网易科技报道) 2月2日消息,波士顿动力公司(Boston
导读:副标题#e# 波士顿动力机器狗学会了跳绳(来源:网易科技报道) 2月2日消息,波士顿动力公司(Boston Dynamics)当地时间周一发布了最新视频,亮点是三个Spot在玩跳绳的场景:站在两端的机器狗摇绳,中间的狗狗原地蹦起。 此外,还可以看到Spot毫不费力地拖

运动技能:即一种反馈策略,可以产生协调的动作来完成特定类型的任务,这是构建更复杂动作的基础;专家:具有专业运动技能的DNN;运动模式:四肢协调运动的一种模式,如站立、原地转动、向前 / 向后小跑、左右转向、跌倒恢复等。

波士顿动力机器狗学会跳绳!三条狗玩得真欢乐

图|不同的技能种类(来源:Science Robotics)

研究人员为机器人训练了8项运动技能,包括:(1)从背部翻身;(2)侧滚;(3)身体姿势控制;(4)站立平衡;(5)左转;(6)右转;(7)小步小跑;(8)大步小跑。

不同的技能需要不同的触发方式,而把 “八技” 融会贯通是 MELA 合成可变技能和产生适应性行为的基础。

面对不同情况下,GNN 生成可变权重(α)来融合所有八个专家网络的参数,这样新合成的运动技能可以通过混合各个专家的有效技能,快速生成不同的运动技能,来适应各种未知场景。

波士顿动力机器狗学会跳绳!三条狗玩得真欢乐

图|多专家学习框架 MELA 的原理(来源:Science Robotics)

实验结果表明,依靠 MELA 输出的融合技能加持,“绝影” 机器人的关键恢复能力控制在1秒内(恢复身体姿态平均0.5s,恢复小跑模式平均0.4s),也显示出了在非结构化环境下更强的可靠性和通障性能。

还有一个值得关注诀窍是,研究人员从生物运动控制中汲取了灵感,这让运动控制和学习框架更加贴近真实的四足动物。

例如,动物的运动行为都是受中枢神经系统控制的,中枢神经系统会重新设置身体关节的参考位置,根据参考位置与实际位置之间的差异,激发肌肉活动以产生适当的力进行姿态调整。

波士顿动力机器狗学会跳绳!三条狗玩得真欢乐

波士顿动力机器狗学会跳绳!三条狗玩得真欢乐

由于阻抗控制提供的弹簧阻尼特性类似于生物肌肉的弹性,因此研究团队应用了平衡点(EP)控制假设,通过调控平衡点来生成关节扭矩。

受肌肉系统的生物力学控制和 EP 假设的启发,研究人员其实将机器人控制分为了两层:在底层,团队使用扭矩控制为机器人配置关节阻抗模式;在顶层,指定深度神经网络(DNN)为所有关节产生设定平衡点,以调节姿势和关节扭矩,建立与环境的力相互作用,在这样的基础上,MELA 可输出更加贴近真实四足动物的运动策略。

波士顿动力机器狗学会跳绳!三条狗玩得真欢乐

图|机器狗的摔倒爬起连贯反应(来源:爱丁堡 Advanced Intelligent Robotics Lab)

下一步,仍需更多跨界合作

(编辑:PHP编程网 - 金华站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!